Stochastic Frailty Models

Søren Fiig Jarner, CSO

“People always live forever when there is an annuity to be paid them”

Jane Austen, Sense and Sensibility (1811)
Agenda

- Mortality modelling objectives
 - Motivating example
- Stochastic frailty models
 - Frailty theory
 - Estimation
 - Model selection
 - Forecasting
- Females vs males
 - Gender gap
 - Separate and joint modelling
 - Cointegrating parameters
- Application to international data
Motivating example – international data

- International data from 1950 to 2006
 - 18 countries: USA, Germany, UK, France, Italy, Spain, Australia, Canada, Holland, Portugal, Austria, Belgium, Switzerland, Sweden, Norway, Finland, Iceland & Denmark

- Human Mortality Database

- Data consists of death counts and exposures
 - $D(t,x) =$ number of deaths
 - $E(t,x) =$ exposure (“years lived”)
Continued increase in life expectancy

- Life expectancy in 2006
 - Females ~ 82 years
 - Males ~ 77 years

- Life expectancy gain since 1950
 - Both sexes ~ 12 years

- Average annual increase
 - Both sexes ~ 0.22 years

- Persistent gender gap between females and males of 5 to 7 years

![International life expectancy graph](image-url)
Rates of improvement decreasing with age

- **Age-specific death rate**
 \[m(t, x) = D(t, x) / E(t, x) \]

- **Rate of improvement in year \(t \)**
 \[\rho(t, x) = -\log \frac{m(t, x)}{m(t-1, x)} \]

- **Averate rate of improvement**
 \[\bar{\rho}(x) = \frac{1}{56} \log \frac{m(2006, x)}{m(1950, x)} \]

- **Rates of improvement in the range from 1% to 1.5% for most ages**

- **Higher rates of improvement for females than for males**

Average annual rates of improvement

<table>
<thead>
<tr>
<th>Age</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.5%</td>
<td>2.0%</td>
</tr>
<tr>
<td>30</td>
<td>2.0%</td>
<td>1.5%</td>
</tr>
<tr>
<td>40</td>
<td>1.5%</td>
<td>1.0%</td>
</tr>
<tr>
<td>50</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>60</td>
<td>0.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>70</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>80</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>90</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>100</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Rectangularization of the survival curve …
... but increasing improvements in old-age mortality

Female average rates of improvement

<table>
<thead>
<tr>
<th>Age</th>
<th>Rate of improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-59</td>
<td>0.0%</td>
</tr>
<tr>
<td>60-69</td>
<td>0.5%</td>
</tr>
<tr>
<td>70-79</td>
<td>1.0%</td>
</tr>
<tr>
<td>80-89</td>
<td>1.5%</td>
</tr>
<tr>
<td>90-99</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

Male average rates of improvement

<table>
<thead>
<tr>
<th>Age</th>
<th>Rate of improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-59</td>
<td>0.0%</td>
</tr>
<tr>
<td>60-69</td>
<td>0.5%</td>
</tr>
<tr>
<td>70-79</td>
<td>1.0%</td>
</tr>
<tr>
<td>80-89</td>
<td>1.5%</td>
</tr>
<tr>
<td>90-99</td>
<td>2.0%</td>
</tr>
</tbody>
</table>
Mortality modelling objectives

- **Stylized facts**
 - Rates of improvement decreasing with age
 - Old-age rates of improvements increase over time
 - Persistent gender gap

- **Modelling objectives**
 - Simple dynamics generating stylized facts *endogenously*
 - Model covering mortality from early adulthood to the oldest-old, i.e. age 20-120
 - Good fit to historical data
 - Biologically plausible forecasts
 - mortality increase with age and decrease over time
 - forecasted rates of improvement in old-age mortality potentially *higher* than those observed historically
 - Efficient and robust estimation
Stochastic Frailty Models
Frailty theory

- Heterogenous populations
 - People are genetically different
 - Only the more robust will attain high ages

- Multiplicative frailty model (Vaupel, Manton & Stallard (1979))
 - Hazard for an individual with (unobserved) frailty z
 \[
 \mu(x; z) = z\mu_{base}(x)
 \]
 where $\mu_{base}(x)$ is a baseline hazard describing the age effect
 - Population hazard
 \[
 \mu(x) = E[Z|x]\mu_{base}(x)
 \]
 where $E[Z|x]$ is the (conditional) mean frailty in the cohort at age x
Frailty at age 80

Conditional frailty at age 80

Conditional mean frailty $E[Z|x=80] = 0.8313$
Calculating the mean frailty

- Integrated intensities
 \[I(x) = \int_0^x \mu_{\text{base}}(u) du \]
 \[H(x) = \int_0^x \mu(u) du \]

- Laplace transform of frailty distribution (at birth)
 \[L(s) = \mathbb{E}[\exp(-sZ)] \]

Theorem, e.g. Hougaard (1984)

\[H(x) = \nu[I(x)] \]
\[\mathbb{E}[Z \mid x] = \nu'[I(x)] = \nu'[\nu^{-1}\{H(x)\}] \]

where \(\nu(s) = -\log L(s) \)
Gamma frailty

Let Z be Gamma-distributed with mean 1 and variance σ^2

$$L(s) = \left(1 + \sigma^2 s\right)^{-1/\sigma^2}$$

$$\mathbb{E}[Z \mid x] = \left(1 + \sigma^2 I(x)\right)^{-1} = \exp\left(-\sigma^2 H(x)\right)$$

Inverse Gaussian frailty

Let Z be inverse Gaussian with mean 1 and variance σ^2

$$L(s) = \exp\frac{1-\sqrt{1+2\sigma^2 s}}{\sigma^2}$$

$$\mathbb{E}[Z \mid x] = \left(\sqrt{1 + 2\sigma^2 I(x)}\right)^{-1/2} = \left(1 + \sigma^2 H(x)\right)^{-1}$$
Old-age mortality plateau

- Death rates are (approximately) exponentially increasing with age, but slower increase at very old ages

- Gompertz-Makeham
 \[\mu(x) = \alpha \exp(\beta x) + \gamma \]

- Gompertz-Makeham with Gamma-frailty
 \[\mu(x; z) = z \alpha \exp(\beta x) + \gamma \]
 has population hazard of logistic form
 \[\mu(x) = \frac{\kappa \exp(\beta x)}{1 + \varphi \exp(\beta x)} + \gamma \]
Population dynamics

- Frailty model for time- and age-dependent mortality

\[\mu(t, x; z) = z \mu_{\text{base}}(t, x) \]

where \(\mu_{\text{base}}(t, x) \) is a baseline hazard describing the time and age effect.

- Population hazard

\[\mu(t, x) = E[Z|t, x] \mu_{\text{base}}(t, x) \]

where \(E[Z|t, x] \) is the mean frailty in the cohort of age \(x \) at time \(t \), i.e. cohort born at time \(t-x \).

- Mean frailty (assuming same frailty distribution at birth for all cohorts)

\[
E[Z \mid t, x] = v'[I(t, x)] = v'[v^{-1}\{H(t, x)\}] \\
I(t, x) = \int_0^x \mu_{\text{base}}(u + t - x, u) du \\
H(t, x) = \int_0^x \mu(u + t - x, u) du
\]
Rates of improvement

- Assumptions
 - for fixed x, $\mu_{base}(t,x)$ decreases to 0 as t tends to infinity
 - same frailty distribution at birth for all cohorts with mean one

- Dynamics
 - $I(t, x) = \int_0^x \mu_{base}(u + t - x, u) du$ decreases to 0 as t tends to infinity
 - $E[Z | t, x] = \nu'[I(t, x)]$ increases to 1 as t tends to infinity

- Rate of improvement of (frailty dependent) age-specific mortality

\[
\rho(t, x) = -\frac{\partial}{\partial t} \log \mu(t, x) = -\frac{\partial}{\partial t} \log E[Z | t, x] - \frac{\partial}{\partial t} \log \mu_{base}(t, x)
\]

Rate of improvement of old-age mortality:

- Initially, improvements in μ_{base} are (partially) offset by increase in mean frailty
- Eventually, mean frailty is close to 1 and improvements in μ and μ_{base} will be the same
A stochastic frailty model is a model for population mortality of the form

\[
\mu(t, x) = \mathbb{E}[Z|t, x] \mu_{base}(t, x)
\]

where

- frailty, \(Z \), is Gamma-distributed with mean 1 and variance \(\sigma^2 \) (same for all cohorts)
- \(\mu_{base}(t, x) = F(x; \theta_t) \), where \(F(x; \theta) \) is a parametric mortality law, e.g. Gompertz
- \((\theta_t) \) time-series of parameters describing dynamics of individual mortality over time

Example: Time-dependent Gamma-Gompertz model

\[
\mu(t, x) = \mathbb{E}[Z|t, x; \sigma^2] \alpha_t \exp(\beta_t x)
\]
- Death counts are assumed independent with

\[D(t, x) \sim \text{Poisson}(\mu(t, x)E(t, x)) \]

where \(\mu(t, x) = E[Z|t, x] \mu_{\text{base}}(t, x) = E[Z|t, x; \sigma^2]F(x; \theta_t) \)

- Likelihood function

\[
L(\theta, \sigma^2) \propto \prod_{t,x} \left\{ E[Z|t,x; \sigma^2]F(x; \theta_t)E(t, x) \right\}^{D(t,x)} \exp\left\{ -E[Z|t,x; \sigma^2]F(x; \theta_t)E(t, x) \right\}
\]

where \(E[Z|t,x; \sigma^2] = \left[1 + \sigma^2 I(t, x; (\theta_{s_{t-x<s<t}})) \right]^{-1}, \ I(t, x; (\theta_{s_{t-x<s<t}})) = \sum_{s=0}^{x-1} F(u; \theta_{u+t-x}) \)

- This likelihood function is very hard to optimize!
From individual hazard to population hazard

- Remember (property of Gamma frailty)
 \[
 E[Z \mid t, x] = \left(1 + \sigma^2 I(t, x) \right)^{-1} = \exp\left(-\sigma^2 H(t, x)\right)
 \]

 \[
 I(t, x) = \int_0^x \mu_{base}(u + t - x, u) du
 \]

 \[
 H(t, x) = \int_0^x \mu(u + t - x, u) du
 \]

- Hence

 \[
 E[Z \mid t, x; \sigma^2] = \left[1 + \sigma^2 I(t, x; (\theta_s)_{t-x<s<t}) \right]^{-1} \approx \exp\left[-\sigma^2 \tilde{H}(t, x)\right]
 \]

 where \(\tilde{H}(t, x)\) is the observed integrated population hazard

 \[
 \tilde{H}(t, x) = \sum_{u=0}^{x-1} m(t - x + u, u)
 \]

 \[
 m(t, x) = D(t, x) / E(t, x)
 \]
We will base estimation on the pseudo likelihood

\[\tilde{L}(\theta, \sigma^2) \propto \prod_{t,x} \left\{ \exp\left[-\sigma^2 \tilde{H}(t, x)\right] F(x; \theta) E(t, x) \right\}^{D(t,x)} \exp\left[-\sigma^2 \tilde{H}(t, x)\right] F(x; \theta) E(t, x) \]

corresponding to the model

\[D(t, x) \sim \text{Poisson}(\tilde{\mu}(t, x) E(t, x)) \]

where

\[\tilde{\mu}(t, x) = \exp\left[-\sigma^2 \tilde{H}(t, x)\right] F(x; \theta) \]

\[\tilde{H}(t, x) = \sum_{u=0}^{t-1} m(t - x + u, u) \]

\[m(t, x) = D(t, x) / E(t, x) \]

This likelihood is much easier to handle!
Calculating integrated observed hazard

- Data: \(\{(D(t, x), E(t, x)) : t_{\text{min}} \leq t \leq t_{\text{max}}, x_{\text{min}} \leq x \leq x_{\text{max}}\} \)

- Integrated observed hazard depends on data outside data window

\[
\tilde{H}(t, x) = \sum_{u=0}^{x-1} m(t - x + u, u)
\]

\[
m(t, x) = \frac{D(t, x)}{E(t, x)}
\]

- We “extend” the data window by setting

\[
m(t, x) = 0 \quad \text{for} \quad x < x_{\text{min}}
\]

\[
m(t, x) = m(t_{\text{min}}, x) \quad \text{for} \quad t < t_{\text{min}}
\]
Assume σ^2 known (fixed)

The parameters (θ_t) can be estimated independently of each other

Parameter θ_t is estimated from the (partial) model

$$D(t, x) \sim \text{Poisson}\left(\exp[-\sigma^2 \tilde{H}(t, x)]E(t, x)F(x, \theta_t)\right) \text{ for } x_{\min} \leq x \leq x_{\max}$$

i.e. based only on data from year t

Maximum likelihood estimation can use analytical properties of $F(x; \theta)$
Estimating σ^2

- Assuming time-dependent parameters (θ_t) fixed
- σ^2 is estimated from the model for all data
- Likelihood is log-concave, i.e. local maximum = global maximum

\[
\tilde{l}(\sigma^2) = \log \tilde{L}(\theta, \sigma^2) = \sum_{t,x} -\sigma^2 D(t, x)\tilde{H}(t, x) - \exp[-\sigma^2 \tilde{H}(t, x)]F(x; \theta_t)E(t, x) + \text{const}
\]

\[
\frac{\partial \tilde{l}}{\partial \sigma^2} = \sum_{t,x} - D(t, x)\tilde{H}(t, x) + \tilde{H}(t, x) \exp[-\sigma^2 \tilde{H}(t, x)]F(x; \theta_t)E(t, x)
\]

\[
\frac{\partial^2 \tilde{l}}{\partial (\sigma^2)^2} = \sum_{t,x} - \tilde{H}^2(t, x) \exp[-\sigma^2 \tilde{H}(t, x)]F(x; \theta_t)E(t, x) < 0
\]

- Likelihood equation: \[\frac{\partial \tilde{l}}{\partial \sigma^2}(\hat{\sigma}^2) = 0\]

- Efficient and robust estimation of σ^2 using monotonicity of \[\frac{\partial \tilde{l}}{\partial \sigma^2}\]
A stochastic frailty model can be estimated using a switching algorithm:

1. Calculate integrated population hazard, $\tilde{H}(t, x)$
2. Choose initial value for σ^2, e.g. $\sigma^2=0$
3. Iterate the following steps until convergence
 - Estimate time-dependent parameters (θ_i) given current value of σ^2
 - Estimate σ^2 given current value of (θ_i)

It can be shown that the EM algorithm always converges to a (local) maximum of the likelihood function
A generalized stochastic frailty model is a model of the form

\[\mu(t, x) = E[Z|t, x] \mu_{\text{base}}(t, x) + \mu_{\text{acc}}(t, x) \]

where

- frailty, Z, is Gamma-distributed with mean 1 and variance \(\sigma^2 \) (same for all cohorts)
- \(\mu_{\text{base}}(t, x) = F(x; \theta_t) \), where \(F(x; \theta) \) is a parametric mortality law, e.g. Gompertz
- \((\theta_t) \) time-series of parameters describing dynamics of individual mortality over time
- \(\mu_{\text{acc}}(t, x) = G(x; \nu_t) \), where \(G(x; \nu) \) is a parametric mortality law describing frailty independent causes of death, e.g. accidents
- \((\nu_t) \) time-series of parameters describing dynamics of frailty independent mortality

Example: Time-dependent Gamma-Makeham model

\[\mu(t, x) = E[Z|t, x; \sigma^2] \alpha_t \exp(\beta_t x) + \gamma_t \]
Data model

- Death counts are assumed independent with

\[D(t, x) \sim \text{Poisson}(\mu(t, x)E(t, x)) \]

where \(\mu(t, x) = E[Z|t, x] \mu_{\text{base}}(t, x) + \mu_{\text{acc}}(t, x) \)

- Estimation will be based on the model

\[D(t, x) \sim \text{Poisson}(\tilde{\mu}(t, x)E(t, x)) \]

where \(\tilde{\mu}(t, x) = \exp[-\sigma^2 \tilde{H}(t, x)] \text{F}(x; \theta) + \text{G}(x; \nu, \tau) \)

\[\tilde{H}(t, x) = \sum_{u=0}^{x-1} \{m(t-x+u, u) - G(u; \nu_{t-x+u})\} \]

(adjusted integrated population hazard)

\[m(t, x) = D(t, x) / E(t, x) \]
Competing risks model

- Competing risks model
 \[D(x) \sim \text{Poisson}(E(x)[\mu_1(x; \theta) + \mu_2(x; \nu)]) \]

- Interpretation: Two different, independent sources of death
- Complicated likelihood (not log-concave)

- If death counts had been recorded according to source of death then
 \[D_1(x) \sim \text{Poisson}(E(x)\mu_1(x; \theta)) \]
 \[D_2(x) \sim \text{Poisson}(E(x)\mu_2(x; \nu)) \]

 with \(D_1(x) \) and \(D_2(x) \) independent and \(D(x) = D_1(x) + D_2(x) \)
- Simple likelihood, easy to estimate \(\theta \) and \(\nu \)
Expectation-maximization (EM) algorithm

- EM algorithm:
 - Choose initial values θ^0 and ν^0
 - **E-step**: Treat D_1 and D_2 as missing data and calculate expected value of full log-likelihood given data and current value of parameters

 $Q(\theta, \nu) = E[l(\theta, \nu; D_1, D_2) \mid D, \theta^i, \nu^i]$

 where (omitting the x argument)

 $l(\theta, \nu; D_1, D_2) = \sum_x \{D_1 \log \mu_1(\theta) - E\mu_1(\theta)\} + \sum_x \{D_2 \log \mu_2(\nu) - E\mu_2(\nu)\} + \text{const}$

 $D_1 \mid D, \theta^i, \nu^i \sim \text{Binom}(D, \mu_1(\theta^i) / [\mu_1(\theta^i) + \mu_2(\nu^i)])$

 $D_2 \mid D, \theta^i, \nu^i \sim \text{Binom}(D, \mu_2(\nu^i) / [\mu_1(\theta^i) + \mu_2(\nu^i)])$

 - **M-step**: Maximize Q to obtain new estimates θ^{i+1} and ν^{i+1}

 - Iterate E-step and M-step till convergence
Both the E-step and the M-step are easy to implement.

Formally the EM algorithm corresponds to iteratively estimating the models:

\[D_1^i(x) \sim \text{Poisson}(E(x)\mu_1(x; \theta)) \]

\[D_2^i(x) \sim \text{Poisson}(E(x)\mu_2(x; \nu)) \]

where

\[D_1^i(x) = D(x) \frac{\mu_1(x;\theta^i)}{\mu_1(x;\theta^i) + \mu_2(x;\nu^i)} \]

\[D_2^i(x) = D(x) \frac{\mu_2(x;\nu^i)}{\mu_1(x;\theta^i) + \mu_2(x;\nu^i)} \]

Note: This only holds formally, since \(D_1^i(x) \) and \(D_2^i(x) \) are not integer-valued.
Estimating time-dependent parameters

- **Model:** \(D(t, x) \sim \text{Poisson}(E(t, x)[e^{-\sigma^2 \tilde{H}^{(t,x)}(t, x)} F(x; \theta_t) + G(x; \nu_t)]) \)

- **EM algorithm for fixed value of \(\sigma^2 \):**
 - Choose initial values \((\theta_0^0)\) and \((\nu_0^0)\)
 - Calculate adjusted integrated population hazard (on extended data window)
 \[
 \tilde{H}_i^{(t, x)}(t, x) = \sum_{u=0}^{x-1} \left\{ n(t - x + u, u) - G(u; \nu_{t-x+u}^i) \right\}
 \]
 - Obtain new estimates \((\theta_{i+1}^t)\) and \((\nu_{i+1}^t)\) by estimating the (formal) models
 \[
 D_{\text{base}}^i(t, x) \sim \text{Poisson}(E(t, x)e^{-\sigma^2 \tilde{H}_i^{(t, x)}(t, x)} F(x; \theta_t)) \quad D_{\text{base}}^i(t, x) = D(t, x) \frac{\tilde{\mu}_{\text{base}}^i(t, x)}{\tilde{\mu}_{\text{base}}^i(t, x) + \tilde{\mu}_{\text{acc}}^i(t, x)},
 \]
 \[
 D_{\text{acc}}^i(t, x) \sim \text{Poisson}(E(t, x)G(x; \nu_t)) \quad D_{\text{acc}}^i(t, x) = D(t, x) \frac{\tilde{\mu}_{\text{acc}}^i(t, x)}{\tilde{\mu}_{\text{base}}^i(t, x) + \tilde{\mu}_{\text{acc}}^i(t, x)},
 \]

 where \(\tilde{\mu}_{\text{base}}^i(t, x) = e^{-\sigma^2 \tilde{H}_i^{(t, x)}(t, x)} F(x; \theta_t^i) \) and \(\tilde{\mu}_{\text{acc}}^i(t, x) = G(x; \nu_t^i) \)

- Iterate steps 1 and 2 till convergence
The EM algorithm is reliable but slow
- guaranteed to converge to (local) maximum likelihood estimates
- depending on model complexity run times vary from seconds to hours!

A switching algorithm with a nested EM algorithm is very inefficient

Instead we optimize the (univariate) profile log-likelihood

\[l(\sigma^2) = l(\sigma^2, \hat{\theta}_t(\sigma^2), \hat{\nu}_t(\sigma^2)) = \sum_x \{D(t,x) \log \bar{\mu}(t,x) - E(t,x)\bar{\mu}(t,x)\} \]

where \(\hat{\theta}_t(\sigma^2) \) and \(\hat{\nu}_t(\sigma^2) \) are the maximum likelihood estimates from the EM algorithm
and \(\bar{\mu}(t,x) = e^{-\sigma^2\bar{H}(t,x)} F(x; \hat{\theta}_t(\sigma^2)) + G(x; \hat{\nu}_t(\sigma^2)) \)

Numeric optimization may be achieved using only few evaluations of \(l(\sigma^2) \)
Summary

- Stochastic frailty model

\[\mu(t, x) = E[Z|t,x] \mu_{base}(t, x) \]

- Estimation by switching algorithm:
 1. Estimate time-dependent parameters \(\theta_i \) for current value of \(\sigma^2 \)
 2. Estimate \(\sigma^2 \) for current value of \(\theta_i \) exploiting log-concavity

- Generalized stochastic frailty model

\[\mu(t, x) = E[Z|t,x] \mu_{base}(t, x) + \mu_{acc}(t, x) \]

- Competing risks model
- Maximization of profile log-likelihood for \(\sigma^2 \)
- Profile log-likelihood calculated by EM-algorithm
Statistical analysis
Goodness of fit

- **Estimated model:** \(D(t, x) \sim \text{Poisson}(\hat{\mu}(t, x)E(t, x)) \)

- **Residuals**
 - **Pearson residual**
 \[
 r_p(t, x) = \frac{D(t, x) - \hat{\mu}(t, x)E(t, x)}{\sqrt{\hat{\mu}(t, x)E(t, x)}} = \frac{E(t, x)}{\sqrt{\hat{\mu}(t, x)}} \left(\frac{m(t, x) - \hat{\mu}(t, x)}{\hat{\mu}(t, x)} \right) \sim_{approx} N(0,1)
 \]
 - **Anscombe residual for Possion distribution**
 \[
 r_A(t, x) = 3 \sqrt{\frac{D(t, x)/\hat{\mu}(t, x)E(t, x)}{2}} - \left[\frac{\hat{\mu}(t, x)E(t, x)}{2} \right]^{2/3} = \sqrt{\frac{E(t, x)}{\hat{\mu}(t, x)}} \left(\frac{m(t, x) - \hat{\mu}(t, x)}{\hat{\mu}(t, x)} \right) \sim_{approx} N(0,1)
 \]

- **Residuals are generally too large due to large exposures**

- **Relative error**
 \[
 \frac{m(t, x) - \hat{\mu}(t, x)}{\hat{\mu}(t, x)}
 \]

- **Summary measure of goodness of fit**
 \[
 \text{deviance} = -2[\log L(\hat{\mu}) - \log L(m)], \quad m(t, x) = D(t, x) / E(t, x)
 \]
Model selection

A good simple model is better than an excellent complex model

- Trade-off
 - Complexity: good fit to historical data
 - Simplicity: ease of forecasting

- Fit can always be improved by adding more parameters

- Information criteria, e.g. AIC or BIC, balance improved fit against complexity
 - but they tend to prefer more parameters to fewer parameters

- Our primary aim is forecasting
Model 1: Gamma-Makeham

\[\mu(t, x) = \mathbb{E}[Z|t, x; \sigma^2] \exp(\alpha + \beta x + \gamma) \]

Model 2: Log-quadratic

\[\mu(t, x) = \mathbb{E}[Z|t, x; \sigma^2] \exp(\alpha + \beta \gamma x + \eta x^2) + \gamma \]

Fitted to international male mortality for age 20-100 in the period 1950-2006

Deviance
- Model 1: 415097
- Model 2: 224348

Model 2 is clearly superior in terms of overall fit (deviance)
QQ-plot of Anscombe residuals

Normal QQ plot for Model 1

Normal QQ plot for Model 2
Time-dependent parameters of baseline hazard

Model 1: level (α)

Model 2: level (α)

Model 1: slope (β)

Model 2: slope (β)

Model 2: quadratic ($\eta/100$)

Model 1: Gamma-Makeham

$\mu_{base}(t, x) = \exp(\alpha + \beta_x)$

Model 2: Log-quadratic

$\mu_{base}(t, x) = \exp(\alpha_x + \beta_x + \eta_x x^2)$
Assume model has been chosen and estimated

\[\hat{\mu}(t, x) = e^{-\sigma^2 \tilde{H}(t, x)} F(x; \hat{\theta}_t) + G(x; \hat{\nu}_t) \]

Next, choose and estimate time-series models for \((\theta_t)\) and \((\nu_t)\)

In many cases a random walk with drift is adequate

\[\theta_t = \theta_{t-1} + \mu_\theta + \sigma_\theta \varepsilon_t \]
\[\nu_t = \nu_{t-1} + \mu_\nu + \sigma_\nu \xi_t \]

where \((\varepsilon_t)\) and \((\xi_t)\) are independent (normal) random variates

In other cases more elaborate time-series models may be used
Rewrite intensity in terms of “observed” integrated individual intensity

\[\hat{\mu}(t, x) = \left(1 + \hat{\sigma}^2 \tilde{I}(t, x) \right)^{-1} F(x; \hat{\theta}, \hat{\nu}) + G(x; \hat{\nu}), \quad \text{where} \quad \tilde{I}(t, x) = \left(e^{\hat{\sigma}^2 \tilde{H}(t, x)} - 1 \right)/\hat{\sigma}^2 \]

Forecasting from jump-off year \(T \)

\[\mu(t, x) = \left(1 + \hat{\sigma}^2 \tilde{I}(t, x) \right)^{-1} F(x; \bar{\theta}, \bar{\nu}) + G(x; \bar{\nu}), \quad \text{for} \quad t > T \]

where \(\bar{\theta} \) and \(\bar{\nu} \) are either deterministic (e.g. mean) forecasts, or stochastic realizations from the time-series model, and \(\tilde{I}(t, x) \) is given by the recursion

For \(x = x_{\min} \):
\[\tilde{I}(t, x_{\min}) = 0 \]

For \(x > x_{\min} \):
\[\tilde{I}(t, x) = \tilde{I}(t-1, x-1) + F(x-1, \hat{\theta}_{t-1}) \]
Joint modelling of females and males
The gender gap

- Female life expectancy higher than male life expectancy
- Gender gap varies over time, but is believed to persist
- Separate analyses of females and males lead to diverging forecasts
- We need to model females and males jointly to ensure non-diverging forecasts

![Graph showing life expectancy difference between females and males over time](image-url)

- Green line: Life expectancy difference at age 0
- Orange line: Life expectancy difference at age 60
- Purple line: Life expectancy difference at age 100

Year:
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000

Difference in years:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

Life expectancy difference between females and males
Separate analyses

- Assume the same model has been estimated for females and males

\[\hat{\mu}_f(t, x) = e^{-\hat{\sigma}_f^2 \hat{H}_f(t,x)} F(x; \hat{\Theta}_f(t)) + G(x; \hat{V}_f(t)) \]
\[\hat{\mu}_m(t, x) = e^{-\hat{\sigma}_m^2 \hat{H}_m(t,x)} F(x; \hat{\Theta}_m(t)) + G(x; \hat{V}_m(t)) \]

- Assume time-dependent parameters are modelled by random walks with drift

\[\theta_f^f = \theta_{f-1}^f + \hat{\mu}_f^f + \hat{\sigma}_f^f \epsilon_i^f \quad (\epsilon_i^f \text{ iid normal variates}) \]
\[\theta_m^m = \theta_{m-1}^m + \hat{\mu}_m^m + \hat{\sigma}_m^m \epsilon_i^m \quad (\epsilon_i^m \text{ iid normal variates}) \]

- Difference is also a random walk with drift

\[d_t = \hat{\theta}_f^f - \hat{\theta}_m^m \]
\[d_t = d_{t-1} + (\hat{\mu}_f^f - \hat{\mu}_m^m) + \sigma_d u_t \quad (u_t \text{ iid normal variates}) \]

- Generally, diverging forecasts using standard estimates

\[\hat{\mu}_f^f = \frac{1}{n} \sum_{t} \Delta \hat{\theta}_f^f \neq \frac{1}{n} \sum_{t} \Delta \hat{\theta}_m^m = \hat{\mu}_m^m \]
\[\sigma_f^f = \sqrt{ \frac{ \sum (\Delta \hat{\theta}_f^f - \hat{\mu}_f^f)^2 }{n-1} } \neq \sqrt{ \frac{ \sum (\Delta \hat{\theta}_m^m - \hat{\mu}_m^m)^2 }{n-1} } = \sigma_m^m \]
\[\sigma_d = \sqrt{ (\sigma_f^f)^2 + (\hat{\sigma}_m^m)^2 } \]

where \(\Delta \hat{\theta}_f^f = \hat{\theta}_f^f - \hat{\theta}_{f-1}^f \), \(\Delta \hat{\theta}_m^m = \hat{\theta}_m^m - \hat{\theta}_{m-1}^m \) and \(n \) is number of differences in data.
Converging *mean* forecasts can be achieved by setting

\[
\hat{\mu}_t^f = \hat{\mu}_t^m = \frac{1}{2n} \sum_i \left(\Delta \hat{\theta}_t^f + \Delta \hat{\theta}_t^m \right)
\]

but the difference is still a random walk (without drift)

\[
d_t = \hat{\theta}_t^f - \hat{\theta}_t^m
\]

\[
d_t = d_{t-1} + \sigma_d u_t
\]

- Mean and variance given value at jump-off year \(T \)
 - \(E[d_{T+h} | d_T] = d_T \)
 - \(\text{Var}[d_{T+h} | d_T] = h \sigma_d^2 \to \infty \quad \text{for} \quad h \to \infty \)
- Probability that females and males will stay close
 - \(P(\mid d_{T+h} - d_T \mid \leq K) \to 0 \quad \text{for} \quad h \to \infty \)

for any \(K \)!
Joint modelling objectives

- Female and male parameters should evolve similar to random walks
- The difference should possess randomness but stay bounded (in probability)

Formally, we want female and male parameters to *cointegrate*

Definitions

- A process X_t is called *stationary* if there exists a distribution π such that $X_t \xrightarrow{D} \pi$

- A process X_t is called *first-order integrated* if $\Delta(X_t - E(X_t))$ is stationary, e.g. X_t is a random walk (with drift) or similar to a random walk

- A multivariate, first-order integrated process X_t is called *cointegrated* with cointegration vector $\beta \neq 0$ if $\beta'X_t$ is stationary
Error correction model

- Assume (for the moment) that θ_t^f and θ_t^m are univariate
- Form the bivariate process
 \[X_t = \begin{pmatrix} \theta_t^f \\ \theta_t^m \end{pmatrix} \]
- **Error correction** model
 \[\Delta X_t = \alpha \beta' X_{t-1} + \mu + \epsilon_t \]
 where $\alpha = (\alpha_1 \alpha_2)'$, $\beta = (\beta_1 \beta_2)'$, $\mu = (\mu_1 \mu_2)'$, and $\epsilon_t \sim N_2(0, \Omega)$
- Interpretation
 - Consider $\beta' X_t = E(\beta' X_t) = c$ as defining the relation between males and females
 - X_t is updated in response to the disequilibrium error $\beta' X_t - c$ through the adjustment α
 \[\beta' X_t = \beta' X_{t-1} + \beta' \alpha (\beta' X_{t-1} - c) + \beta' \epsilon_t \]
We are interested in the model with $\beta = (1 -1)'$

$$\Delta X_i = \alpha d_{i-1} + \mu + \epsilon_i$$

where $d_i = \theta_i^f - \theta_i^m$

Difference process

$$d_i = (1 + \alpha_1 - \alpha_2) d_{i-1} + (\mu_1 - \mu_2) + (\epsilon_i^1 - \epsilon_i^2)$$

In stationarity (requires $|1+\alpha_1 - \alpha_2| < 1$), i.e. when females and males cointegrate

$$E[d_i] = \frac{\mu_1 - \mu_2}{\alpha_2 - \alpha_1}$$

$$E[\Delta X_i] = E\left(\begin{pmatrix} \theta_i^f - \theta_{i-1}^f \\ \theta_i^m - \theta_{i-1}^m \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \frac{\alpha_2 \mu_1 - \alpha_1 \mu_2}{\alpha_2 - \alpha_1}$$
Rewrite model in standard regression form

\[Y_t = B'Z_t + \epsilon_t \]

where \(Y_t = \Delta X_t \), \(B' = \begin{pmatrix} \alpha_1 & \mu_1 \\ \alpha_2 & \mu_2 \end{pmatrix} \), \(Z_t = \begin{pmatrix} d_{t-1} \\ 1 \end{pmatrix} \), and \(\epsilon_t \sim N_2(0, \Omega) \)

Regression estimators (maximum likelihood estimators)

\[
\hat{B} = \left(\sum_i Z_i Z_i' \right)^{-1} \left(\sum_i Z_i X_i' \right) = S_{xz}^{-1} S_{xx} \\
\hat{\Omega} = \frac{1}{n} \sum_t (X_t - \hat{B}'Z_t)(X_t - \hat{B}'Z_t)' = S_{xx} - S_{xz}S_{xz}^{-1} S_{zx}
\]

where for any two processes \(X_t \) and \(Z_t \) we use the notation

\[
S_{zx} = \frac{1}{n} \sum_{t=1}^n Z_t X_t'
\]
Estimated, stationary mean difference and mean drift will not necessarily equal empirical values.

Desired mean values of

\[E[d_t] = \frac{\mu_1 - \mu_2}{\alpha_2 - \alpha_1} = d_{target} \]

\[E[\theta_t^f - \theta_{t-1}^f] = E[\theta_t^m - \theta_{t-1}^m] = \frac{\alpha_2 \mu_1 - \alpha_1 \mu_2}{\alpha_2 - \alpha_1} = \Delta_{target} \]

can be achieved by adjusting drift parameters (and retaining \(\alpha \))

\[\mu_1 = \Delta_{target} - \alpha_1 d_{target} \]

\[\mu_2 = \Delta_{target} - \alpha_2 d_{target} \]
Application to international data
- International data from Human Mortality Database
 - 18 countries
 - Data exists for age 0-110
- Data window used for estimation
 - Time period: 1950-2006
 - Age span: 20-100
- Model selection
 - Find common model for females and males
- Separate and joint modelling of females and males
 - Random walk and error correction model
- Mean forecast and stochastic forecast
 - Cohort and period life expectancy
- Analysis performed in R
Model selection

- Generalized stochastic frailty model

\[
\mu(t, x) = \mathbb{E}[Z|t, x] \mu_{\text{base}}(t, x) + \mu_{\text{acc}}(t, x) = e^{-\sigma^2 \tilde{\rho}(t, x)} F(x; \theta_t) + G(x; \nu_t)
\]

- Candidate models

<table>
<thead>
<tr>
<th></th>
<th>(F(x; \theta_t))</th>
<th>(G(x; \nu_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>(-)</td>
<td>(\exp(\alpha_i + \beta_i x))</td>
</tr>
<tr>
<td>Model 2</td>
<td>(-)</td>
<td>(\exp(\alpha_i + \beta_i x + \gamma_t))</td>
</tr>
<tr>
<td>Model 3</td>
<td>(-)</td>
<td>(\exp(\alpha_i + \beta_i x + \eta_i x^2) + \gamma_t)</td>
</tr>
<tr>
<td>Model 4</td>
<td>(-)</td>
<td>(\frac{\kappa_i \exp(\beta_i x)}{1 + \phi_i \exp(\beta_i x)} + \gamma_t)</td>
</tr>
<tr>
<td>Model 5</td>
<td>(\exp(\alpha_i + \beta_i x))</td>
<td>(\gamma_t)</td>
</tr>
<tr>
<td>Model 6</td>
<td>(\exp(\alpha_i + \beta_i x + \eta_i x^2))</td>
<td>(\gamma_t)</td>
</tr>
</tbody>
</table>
Frailty models are generally better

Model 6 is by far the best overall
 - but we know from the example that its parameters are hard to forecast

Consider model “in between” Model 5 and Model 6 with $\eta_i = \eta$

<table>
<thead>
<tr>
<th>Model</th>
<th>$F(x; \theta_i)$</th>
<th>$G(x; \nu_i)$</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>$-$</td>
<td>$\exp(\alpha_i + \beta_i x)$</td>
<td>1765791</td>
<td>1731634</td>
</tr>
<tr>
<td>Model 2</td>
<td>$-$</td>
<td>$\exp(\alpha_i + \beta_i x) + \gamma_i$</td>
<td>534533</td>
<td>572201</td>
</tr>
<tr>
<td>Model 3</td>
<td>$-$</td>
<td>$\exp(\alpha_i + \beta_i x + \eta_i x^2) + \gamma_i$</td>
<td>405989</td>
<td>224315</td>
</tr>
<tr>
<td>Model 4</td>
<td>$-$</td>
<td>$\frac{\kappa_i \exp(\beta_i x)}{1 + \varphi_i \exp(\beta_i x)} + \gamma_i$</td>
<td>512072</td>
<td>334767</td>
</tr>
<tr>
<td>Model 5</td>
<td>$\exp(\alpha_i + \beta_i x)$</td>
<td>γ_i</td>
<td>534158</td>
<td>415097</td>
</tr>
<tr>
<td>Model 6</td>
<td>$\exp(\alpha_i + \beta_i x + \eta_i x^2)$</td>
<td>γ_i</td>
<td>217076</td>
<td>224348</td>
</tr>
</tbody>
</table>
Females and males do not agree on the best model

- Females prefer constant value of $\eta \sim 6 \cdot 10^{-4}$
- Males prefer constant value of $\eta \sim 0$ (or negative)

- Value with lowest total deviance, $\eta = 2 \cdot 10^{-4}$, is chosen as common value

<table>
<thead>
<tr>
<th>Model</th>
<th>$F(x; \theta_i)$</th>
<th>$G(x; \nu_i)$</th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 5</td>
<td>$\exp(\alpha_i + \beta_i x)$</td>
<td>γ_i</td>
<td>534158</td>
<td>415097</td>
<td>949255</td>
</tr>
<tr>
<td></td>
<td>$\exp(\alpha_i + \beta_i x + 1x^210^{-4})$</td>
<td>γ_i</td>
<td>463798</td>
<td>461744</td>
<td>925541</td>
</tr>
<tr>
<td></td>
<td>$\exp(\alpha_i + \beta_i x + 2x^210^{-4})$</td>
<td>γ_i</td>
<td>403532</td>
<td>514086</td>
<td>917618</td>
</tr>
<tr>
<td></td>
<td>$\exp(\alpha_i + \beta_i x + 3x^210^{-4})$</td>
<td>γ_i</td>
<td>353287</td>
<td>570513</td>
<td>923801</td>
</tr>
<tr>
<td></td>
<td>$\exp(\alpha_i + \beta_i x + 6x^210^{-4})$</td>
<td>γ_i</td>
<td>268205</td>
<td>781940</td>
<td>1050145</td>
</tr>
<tr>
<td>Model 6</td>
<td>$\exp(\alpha_i + \beta_i x + \eta_i x^2)$</td>
<td>γ_i</td>
<td>217076</td>
<td>224348</td>
<td>441424</td>
</tr>
</tbody>
</table>
- Model fitted to ages 20 to 100

- Complex structure of mortality below age 20
 - high infant mortality
 - decreasing to age 10
 - increasing after age 10
 - hump around age 20

- At very old ages fit is too high for females and too low for males
 - comprise/common model

Data and fit in 2006

![Graph showing data and fit in 2006](image)
- Common model for females and males

\[\mu(t, x) = e^{-\sigma^2 \tilde{H}(t, x)} \exp(\alpha_t + \beta_t x + 2x^2 10^{-4}) + \gamma_t \]

- Estimated time-dependent parameters

![Level (\(\alpha\))] ![Slope (\(\beta\))] ![Accident rate (\(\gamma\))]
Separate and joint modelling

- Separate modelling by random walks (and no further improvements in accident rates)

\[
\alpha^f_t = \alpha^f_{t-1} - 0.02662 + 0.04588 \epsilon^f_t \\
\beta^f_t = \beta^f_{t-1} + 0.0001548 + 0.0008109 u^f_t \\
\gamma^f_t = \gamma^f_{2006} = 0.03440\%
\]

\[
\alpha^m_t = \alpha^m_{t-1} - 0.02345 + 0.04015 \epsilon^m_t \\
\beta^m_t = \beta^m_{t-1} + 0.0001411 + 0.0006624 u^m_t \\
\gamma^m_t = \gamma^m_{2006} = 0.06882\%
\]

- Joint modelling by error correction model adjusted to empirical difference and drift

\[
\Delta \left(\begin{array}{c}
\alpha^f_t \\
\alpha^m_t
\end{array} \right) = \left(\begin{array}{c}
-0.1057 \\
-0.0436
\end{array} \right) (\alpha^f_{t-1} - \alpha^m_{t-1}) + \left(\begin{array}{c}
-0.1273 \\
-0.0672
\end{array} \right) + \epsilon^\alpha_t \\
E(\Delta \alpha^f) = E(\Delta \alpha^m) = -0.9674 \\
E(\alpha^f - \alpha^m) = -0.02504
\]

\[
\Delta \left(\begin{array}{c}
\beta^f_t \\
\beta^m_t
\end{array} \right) = \left(\begin{array}{c}
-0.1161 \\
-0.0858
\end{array} \right) (\beta^f_{t-1} - \beta^m_{t-1}) + \left(\begin{array}{c}
0.0007682 \\
0.0006062
\end{array} \right) + \epsilon^\beta_t \\
E(\Delta \beta^f) = E(\Delta \beta^m) = 0.005340 \\
E(\beta^f - \beta^m) = 0.0001480
\]

and no further improvements in accident rates
Mean forecast from jump-off year T

- Separate modelling by random walks (accident rates kept at jump-off year value)

$$E(\alpha^f_t) = \alpha^f_T - 0.02662(t - T)$$

$$E(\alpha^m_t) = \alpha^m_T - 0.02345(t - T)$$

$$E(\beta^f_t) = \beta^f_T + 0.0001548(t - T)$$

$$E(\beta^m_t) = \beta^m_T + 0.0001411(t - T)$$

- Joint modelling by error correction model (accident rates kept at jump-off year value)

Mean forecasts are given by the recursion ($t > T$):

$$\begin{pmatrix} E(\alpha^f_t) \\ E(\alpha^m_t) \end{pmatrix} = C_\alpha \begin{pmatrix} E(\alpha^f_{t-1}) \\ E(\alpha^m_{t-1}) \end{pmatrix} + \begin{pmatrix} -0.1273 \\ -0.0672 \end{pmatrix}, \quad C_\alpha = \begin{pmatrix} 1 - 0.1057 & 0.1057 \\ -0.0436 & 1 + 0.0436 \end{pmatrix}$$

$$\begin{pmatrix} E(\beta^f_t) \\ E(\beta^m_t) \end{pmatrix} = C_\beta \begin{pmatrix} E(\beta^f_{t-1}) \\ E(\beta^m_{t-1}) \end{pmatrix} + \begin{pmatrix} 0.0007682 \\ 0.0006062 \end{pmatrix}, \quad C_\beta = \begin{pmatrix} 1 - 0.1161 & 0.1161 \\ -0.0858 & 1 + 0.0858 \end{pmatrix}$$
Forecasted time-dependent parameters

Estimated and forecasted alpha

Estimated and forecasted beta
Same fit but (slightly) different forecasts

International female mortality

International male mortality
Period and cohort life expectancy

Period life expectancy (without future improvements in mortality)

<table>
<thead>
<tr>
<th></th>
<th>2006 Data</th>
<th>RW</th>
<th>EC</th>
<th>2030 RW</th>
<th>EC</th>
<th>2050 RW</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>82.1</td>
<td>82.1</td>
<td>82.1</td>
<td>85.2</td>
<td>85.3</td>
<td>87.5</td>
<td>87.6</td>
</tr>
<tr>
<td>Male</td>
<td>76.7</td>
<td>76.5</td>
<td>76.5</td>
<td>79.3</td>
<td>79.7</td>
<td>81.6</td>
<td>82.1</td>
</tr>
<tr>
<td>Difference</td>
<td>5.4</td>
<td>5.6</td>
<td>5.6</td>
<td>5.8</td>
<td>5.6</td>
<td>6.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Cohort life expectancy (with future improvements in mortality)

<table>
<thead>
<tr>
<th></th>
<th>2006 Data</th>
<th>RW</th>
<th>EC</th>
<th>2030 RW</th>
<th>EC</th>
<th>2050 RW</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-</td>
<td>91.5</td>
<td>91.3</td>
<td>94.2</td>
<td>93.8</td>
<td>96.3</td>
<td>95.7</td>
</tr>
<tr>
<td>Male</td>
<td>-</td>
<td>84.6</td>
<td>85.5</td>
<td>87.2</td>
<td>88.3</td>
<td>89.2</td>
<td>90.4</td>
</tr>
<tr>
<td>Difference</td>
<td>-</td>
<td>6.9</td>
<td>5.8</td>
<td>7.0</td>
<td>5.5</td>
<td>7.1</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Different stochastic structure of RW and EC model...
...leads to large differences in gender gap distribution.

Separate modelling (RW)

Joint modelling (EC)

